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Abstract

This paper presents the one-dimensional axial wave propagation in an infinitely long periodically
supported cylindrically curved panel subjected to supersonic airflow. The aerodynamic forces are based on
piston theory. For this study the structure is considered as an assemblage of a number of identical
cylindrically curved panels each of which will be referred to as a periodic element. A high precision
triangular finite element with certain wave boundary conditions (Floquet’s principle) is introduced in flutter
problems of the proposed structure for the first time. The airflow is assumed in the direction of the straight
edges of the panel. It is assumed that the deflection function accounts for a phase lag term only and does
not consider any attenuation terms. Aerodynamic damping has been neglected for brevity. For a given
geometry a three-dimensional plot related to the phase constant, flutter frequency and pressure parameter
has been obtained corresponding to the optimum periodic angle. The ‘‘flutter line’’(line of instability) has
been identified. The limiting values of flutter frequencies and pressure parameters of the ‘‘flutter line’’ are
compared with the critical flutter condition of a single curved panel, using two methods—an exact
approach and a finite element method. The critical flutter results for multi-supported (1-span, 2-span and 3-
span) curved panels are obtained using the band discretization principle.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The topic of panel flutter due to supersonic airflow has been a matter of interest due to its
importance in supersonic aircraft and launch vehicle design. Liquid engines launch vehicles and
aircraft fuselages may, as a first approximation be considered as cylindrical shells, curved panels
stiffened by stringers and/or rings at regular intervals. These structures are strewn with periodic
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structures. By definition, a periodic structure is one that is made up of identical elements joined to
its neighbours along their boundaries. In the present paper a method of analysis is proposed to
predict the flutter characteristics of multi-span long curved panels supported on equally spaced
transversely rigid supports for the first time using wave propagation method, combined with a
FEM. The approach shows a considerable reduction in matrix size and consequent reduction in
computer storage and/or time.
The problem of vibration and flutter analysis of flat panel [1], curved panel [2–7] and simply

supported unstiffened and orthogonally stiffened shell [8,9] have been developed. The above
reported works are related to flutter analysis of isolated curved panel. Extensive review of the
aeroelasticity of plates and shells are reported in Refs. [10,11], but without periodic structure
concept.
The aeroelastic stability of multi-bay periodically supported panels without curvature on

transversely rigid supports, subjected to lengthwise supersonic fluid flow by the periodic structure
theory (Floquet’s principle) has been examined in Refs. [12,13] in conjunction with the piston
theory aerodynamics of Ashley and Zartarian [14] and using relevant differential equation of
motion of Dowell [15]. Wave dispersion relation has been reported in a finite periodic panel
having arbitrary number of spans, subjected to supersonic airflow.
The high-precision triangular shell finite element of Cowper et al. [16] in conjunction with a

wave approach of Mead [17] has been proposed for first time in this work to study the supersonic
flutter analysis of infinitely long periodically supported curved panels (Fig. 1a) using a linearized
piston theory. Aerodynamic damping has been neglected for brevity. The airflow is assumed in the
direction of the axis. Here it is assumed that the propagation constant is purely imaginary [18–21],
i.e., only propagating wave motions are studied. In a finite periodic panel the spatial attenuation
from bay to bay is lowered if the number of panels are increased and vice versa [15]. In the limit
therefore it may be concluded that in an infinitely long curved panel of equal spans the spatial
attenuation is zero.
The optimum subtended angle corresponding to critical flutter velocity has been used in

periodic flutter analysis. A ‘‘flutter line’’ similar to the case of a periodically supported flat panel
[12,13] has been obtained in this paper. The relationship between the critical phase constant and
critical pressure parameter for the periodic curved panel is presented. Finally, the critical flutter
pressure parameter results for finite multi-supported curved panels have been obtained from
‘‘flutter line’’ using Sengupta’s [22] discretization scheme.

2. Equation of motion

2.1. Flutter equation of a single curved panel

A thin isotropic cylindrically curved panel of length a; width b; thickness h and radius of
curvature R subjected to a supersonic flow over its upper surface is considered (Fig. 1b).
The governing aeroelastic equation of motion for an elastic structural system undergoing small

displacements neglecting aerodynamic damping can be expressed as

½M�f .qg þ ½K �fqg ¼ � Kl½Ka�fqg; ð1Þ
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where [M], [K ], and [Ka] are the global mass, stiffness and aerodynamic stiffness matrices,
respectively, of the total structural system. f .qg and fqg are the global acceleration and
displacement vectors. Kl ¼ 2 Kq=ð %M2

N
� 1Þ1=2 is the aerodynamic pressure parameter. Kq ¼

ð1=2Þ ra
%U2 is the dynamic pressure of the free stream air, %U is the free stream velocity of

supersonic flow, %MN is the free stream Mach number and ra is the free stream air density.
The basic shell element employed here is the conforming higher order arbitrary trianglar shaped

shallow shell finite element of Cowper et al. [16]. The details of the element stiffness, consistent
mass matrices and the asymmetric aerodynamic stiffness matrices are presented in Refs. [1,16,23].
Assuming the solution of the form

fqg ¼ f %qgeiot; ð2Þ

Eq. (1) becomes

O2½M� þ ½K � þ L½Ka�ð Þ
� �

%qf g ¼ 0f g; ð3Þ
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Fig. 1. (a) Infinite periodic curved panel subjected to supersonic flow. (b) Single curved panel (periodic unit) subjected

to supersonic flow. (c) Generalized forces and displacements of a single periodic unit.
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where o is the radian frequency; t is the time variable; q; %q are the generalized global co-ordinates;
O ¼ oR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� n2Þ=E

p
is the non-dimensional frequency; L ¼ Kla3=D; D ¼ Eh3=12ð1� n2Þ is the

bending stiffness; E is Young’s modulus of elasticity and n is the Poisson ratio.
If L ¼ 0; the solution of Eq. (3) will yield the natural frequencies of vibration of the curved

panel. For L greater than 0, the non-symmetric aerodynamic matrix comes into the picture and
some of the eigenvalues become complex for a certain range of the dynamic pressure parameter L:
The lowest value of L for which a pair of complex conjugate eigenvalues appear is identified as
critical dynamic pressure Lcr:

2.2. Flutter analysis of periodic curved panel

Now a cylindrical panel of infinite length which is supported periodically along its length is
considered (Fig. 1a). A periodic element is shown in Fig. 1b. Using the periodic FEM technique
[20,21], the periodic element can be represented by a model with interior and boundary d.o.f. [25].
Each periodic element is connected to its neighbouring elements on its edges. Let {qI}, {qL}, {qR}
be the d.o.f. and {FI}, {FL}, {FR} forces at the left, interior and right of the each periodic unit
where subscripts I ; L; R refer to the interior, left and right, respectively (Fig. 1c).
The linear undamped aeroelastic Eq. (3) of a single unit of the periodic element is given by

O2½M� þ ½K � þ L½Ka�ð Þ
� �

%qf g ¼ Ff g; ð4Þ

where f %qg and {F} are the generalized displacements and forces, respectively, of the periodic
element,

f %qg ¼ qI qL qR

� �T
; ð5Þ

fFg ¼ FI FL FR

� �T
: ð6Þ

The nodal forces {F} are due to any external forces acting on the system and the forces of
interaction between the periodic unit and its neighboring units. When an elastic body is placed in
airflow, there is a possibility of instability due to self-excited oscillation termed as flutter. The
oscillation at the instant of flutter is self-sustained; i.e., no external oscillation or forcing agency is
required. For a free wave {FI}={0}. The force vector {F} can be expressed in the form [17,20,21]

fFg ¼

0

FL

FR

0
B@

1
CA; ð7Þ

where the column on the right-hand side represents the forces on the element from the adjacent
elements. The harmonic motion Eq. (4), using Eqs. (5) and (7) is given by

½K� þ L½Ka�ð Þ þ O2½M�
� � qI

qL

qR

8><
>:

9>=
>; ¼

0

FL

FR

8><
>:

9>=
>;: ð8Þ

Eq. (8) can be solved as a free vibration problem [20]. The matrix ½½K � þ L½Ka�� is
represented as [KK]. The [KK ] matrix is asymmetric which is partitioned into interior, left and
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right d.o.f. as

½KK � ¼

KKI ;I KKI ;L KKI ;R

KKL;I KKL;L KKL;R

KKR;I KKR;L KKR;R

2
64

3
75: ð9Þ

[M] can be similarly derived as a symmetric matrix.
This wave motion is characterized by relating the d.o.f. and equivalent nodal forces in one unit

to the corresponding d.o.f. and forces in adjacent units. Using wave equation [17,20]:

fqRg ¼ e�imxfqLg ð10Þ

on the boundary of the cells, the quantity {qR} can be eliminated. Combining Eqs. (7), (8) and (10)
results in the following:

%KðmxÞ
� �

� O2 %MðmxÞ
� �� � qI

qL

( )
¼ f0g; ð11Þ

where

½ %KðmxÞ� ¼ ½W 0�½KK �½W �; ð12aÞ

½ %MðmxÞ� ¼ ½W 0�½M�½W �: ð12bÞ

The matrix [W ] is explained in Ref. [20].
The boundary condition of the periodic element(single curved panel) is simply supported at all

edges. Eq. (11) can be solved for different values of real phase constants mx and pressure
parameter to find the corresponding eigenvalues (O; frequencies). mx is varied from 0 to p:
In aeroelastic analysis to model a single periodic curved panel, a 6� 6 mesh of triangular

elements has been chosen. The d.o.f. of a single curved panel (Eq. (3)) before applying wave
boundary conditions (Eq. (10)) was 588. It is reduced to 504 d.o.f. (Eq. (11)) after applying wave
boundary conditions (Eq. (10)).

3. Results and discussion

3.1. Finite element method (FEM) for isolated curved panels

A square cylindrical curved panel (a=b ¼ 1) has been considered to compare the present
triangular finite element results with Bismarck-Nasr [5]. The material properties are
E ¼ 210�109 N/m2, r ¼ 7800 kg/m3 and n ¼ 0:3: The results are presented in terms of the non-
dimensional dynamic pressure parameter L as a function of the maximum shell rise (H=h). The
calulations were performed for a square (a=b ¼ 1) curved panel with four edges simply supported
and also with four edges clamped. The results are shown in Fig. 2. Bismarck-Nasr [5] and Dowell
[3] results are obtained from Ref. [5, Fig. 2]. The present results show the same trend as that of
Ref. [5]. The difference between the present results and those due to Bismarck-Nasr [5] is entirely
the result of satisfying different in-plane boundary conditions.
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3.2. Optimum choice of a periodic element for flutter analysis

The numerical results are generated taking the dimension of a full circular cylindrical shell of
axial length a ¼ 1:016m, radius R ¼ 0:508m and thickness h ¼ 1:016�10�3 m [9]. The a=R and
h=R ratios are 2 and 0.002, respectively. The binary flutter analysis of an unstiffened shell with
simply supported ends is reported in Ref. [9]. The binary flutter pressure parameter is plotted for a
range of the full circumferential mode number (n). It has been found from Ref. [9] that the
circumferential full wave number (n) corresponding to the lowest binary flutter pressure
parameter (L ¼ 21 363) is 18.
Now the above dimension (a=R ¼ 2; h=R ¼ 0:002) is considered for a curved panel with four

edges simply supported. The same displacement functions which have been used for a full shell
[24] have been chosen for the curved panel case. The axial (u), circumferential (v) and radial
displacement (w) for curved panel are expressed as follows:

u ¼ Amn sinðlcyÞ cos
lmx

R

� �
eiot;

v ¼ Bmn cosðlcyÞ cos
lmx

R

� �
eiot

w ¼ Cmn sinðlcyÞ cos
lmx

R

� �
eiot;

y ¼
y

R
; lm ¼

mpR

a
; lc ¼

ncpR

b
¼

ncp
yp

; yp ¼
b

R
;

m ¼ number of axial half-waves: ð13Þ

The circumferential half-wave (¼ nc) is equal to 1. The binary (axial mode; r ¼ 1; s ¼ 2) flutter
pressure parameter (L) is plotted for a range of periodic angle (yp). The results are shown in
Fig. 3. The lowest pressure parameter(L ¼ 21 363) corresponds to the periodic angle yp ¼ 101.
These results are compared with an independent calculation using the present triangular FEM
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Fig. 2. Comparison of flutter pressure parameters of a single square (a=b ¼ 1) with a curved panel with [3,5].
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(Fig. 3). In the FEM, for a single curved panel with all the edges simply supported, the lowest
pressure parameter of value (L ¼ 23 669) is obtained. The difference between these two methods
may be due to different inplane boundary conditions and neglecting aerodynamic damping. The
lowest flutter pressure parameter (L) is observed at yp ¼ p=18 (101) in finite element as well as
binary flutter analysis. This periodic angle (corresponding to the lowest flutter pressure
parameter) will now be considered for the supersonic flutter analysis of an infinite periodic
curved panel coupled with Floquet’s principle. The discussions are presented in the next section.

3.3. Flutter analysis of an infinite periodic curved panel

In this section, supersonic flutter analysis in an infinitely long periodically supported
cylindrically curved panel is studied. The infinite curved panel is composed of curved panels
(periodic elements) each of length a; thickness h and radius R and connected end to end with
periodic simple non-deflecting supports (Fig. 1a). The dimension of each periodic unit (curved
panel) is the same as that of Ref. [9], viz., a=R ¼ 2; h=R ¼ 0:002: The circumferential length of
each panel is Ryp: yp is the angle subtended at the centre of circular cross-section of periodic
curved panel. The periodic angle yp ¼ 101 considered in the computation corresponds to the
lowest non-dimensional flutter dynamic pressure parameter (L) of a single curved panel simply
supported at all edges.
In the present approach, we shall assume, for the undamped stable states only real values of the

propagation constants. Solving Eq. (11) for each value of aerodynamic pressure parameter (L) we
may determine the dispersion relationships existing between the phase mx (0 to p) and the real
eigenvalues (o2) over the propagation band. mx is varied from 0 to p . It may be noted that within
the interval of mx (between 0 to p), for all the values of mx other than 0 and p; the eigenvalue is
complex and therefore the structure is unstable. The real eigenvalues has been converted into the
present non-dimensional frequency (O).
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Fig. 3. Flutter dynamic pressure parameter versus periodic angle of a curved panel with all the edges simply supported.
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3.3.1. Determination of ‘‘flutter line’’ and relationship among dynamic pressure parameter L; phase

constant mx and the non-dimensional frequency O (real eigenvalues)
The three-dimensional graphical representation of the relationship between L; O and mx for

undamped vibration is presented for the periodic angle yp ¼ 101 (Fig. 4). This periodic angle is the
optimum angle corresponding to the lowest flutter dynamic pressure.
For zero dynamic pressure (L ¼ 0), the natural frequencies of vibration of finite periodic

structures are real (stable) and correspond to the free vibration natural frequencies of finite
periodic structures. The first two propagation curves (A2B; C2D) corresponding to aerodynamic
pressure L ¼ 0 are shown in Fig. 4. Curve A2B is the first propagation band. Curve C2D is the
second propagation band. As L increases, at pressure parameters L ¼ 23669:34; the upper
bounding frequency of the first band just joins up with the lower bounding frequency of the
second propagation band at mx ¼ 0: The corresponding flutter frequency is Of ¼ 0:1923: The
point is represented by symbol ‘X’ in Fig. 4. This is the starting point (lower limiting point) of
instability of the structure. This point X is the origin of the ‘‘flutter line’’. The pressure parameter
L=23669.34 is the lowest value for this particular panel dimension.
With further increase of L; this lower limiting point X moves towards mx ¼ p and with higher

frequency values. At pressure parameter L=60248, the lower limiting point X is finally meeting at
mx ¼ p: This point is represented by symbol ‘Y’ in Fig. 4. It may be noted the two different curves
showing variation of real (stable) frequencies for mx ¼ 0 and p come closer to each other and
finally coalesce into a single curve for infinite stiffness value for p: This is the upper limit of
‘‘flutter line’’ with flutter dynamic pressure L ¼ 60 248 at O ¼ 0:203 and mx ¼ p (Fig. 4).
The flutter line denotes the critical conditions of onset of instability. It denotes the locus of the

flutter points (corresponding to @mx=@O ¼ 0) of the phase constant–frequency curves at different
values of L [12,13].
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Fig. 4. The relationship among the non-dimensional dynamic pressure parameter L; the phase constant mx and the

frequency O (real part of eigenvalues) of a periodically supported infinitely long curved panel.
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3.3.2. Bounding mode of ‘‘flutter line

The variation of critical phase constant and pressure parameter is presented in Fig. 5 (y0 ¼ 101).
The flutter line (Fig. 5) originates at Lcrit ¼ 23 669; ðmxÞcrit ¼ 0 and Of ¼ 0:1923: The lower
limiting point (X ) of ‘‘flutter line’’ corresponds to the critical flutter conditions for a single
curved panel with four edges simply supported. This is confirmed by the present finite element
flutter and binary flutter analysis of the single isolated curved panel (Table 1). The bracketted
values of Table 1 are the critical flutter condition (Lcrit ¼ 21 363; Of ¼ 0:1917) obtained from
binary flutter analysis of a single curved panel (a=R ¼ 2; h=R ¼ 0:002) with four edges simply
supported. The value Lcrit ¼ 21 363 is also the same as the minimum critical pressure parameter of
a full shell with simply supported ends [9] with circumferential full wave n ¼ 18 and axial mode
(r ¼ 1; s ¼ 2).
The upper limit point (Y ) of ‘‘flutter line’’ (Fig. 5) represents Lcrit ¼ 60248 at Of ¼ 0:203 and

ðmxÞcrit ¼ p: This corresponds to the critical flutter condition of a single curved panel (a=R ¼ 2;
h=R ¼ 0:002) with straight edges simply supported and curved edges clamped. This is verified by
recomputing the flutter condition of a single curved panel (Table 2).
It has been observed that for zero dynamic pressure of the flow, the frequencies of vibration

of finite periodic structures are real (stable) and correspond to the free vibration natural
frequencies of finite periodic structures. In the infinite bay case, these free vibration frequencies
are those that are the bounding frequencies of the propagation bands of the free waves in the
panels [18,22,25]. It may be recalled that for the periodic beam vibration, the ‘‘propagation
bands’’ are effectively the frequency ranges bounded by the frequencies that correspond to the
simply supported single span (lower bounding mode) and the clamped–clamped single span
(upper bounding mode).
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Fig. 5. The relationship between the critical phase constant and the critical non-dimensional dynamic pressure

parameter (flutter curve).
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3.3.3. Critical flutter parameter results of finite multi-span curved panels

The finite 1-span, 2-span and 3-span critical non-dimensional pressure parameters are obtained
from ‘‘flutter line’’ (Fig. 5) by using Sengupta’s [22] discretization principle. For the finite
structure of Nx bays the critical dynamic pressure parameters can easily be obtained [12,13] by
finding the phase lags mx equal to jp=Nx (j ¼ 0 to Nx21) for clamped ends or j ¼ 1 to Nx for
simply supported ends, for the first propagation band. The results are shown in Table 3.
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Table 1

Comparison of lowest bounding flutter frequency and flutter dynamic pressure parameter of ‘‘flutter line’’ at phase

constant ‘0’ with single curved panel results

Periodic angle (yp) Finite element method with periodic structure theory

Flutter frequency (Of ) Dynamic pressure (L)

p/18 (101) 0.1923 23669.34

(0.1917) (21363.21)

Values between brackets obtained from binary flutter analysis of full shell [9] binary flutter analysis of single curved

panel with four edges simply supported.

Table 2

Comparison of upper bounding flutter frequency and flutter dynamic pressure parameter of ‘‘flutter line’’ at phase

constant p with single curved panel results

Periodic angle (yp) Finite element method with periodic structure theory

Flutter frequency (Of ) Dynamic pressure (L)

p/18 (101) 0.2030 60248.26

(0.2023) (60244.53)

Values between brackets are results of a single curved panel with straight edges simply supported and curved edges

clamped using present finite element method.

Table 3

Critical flutter parameters for one-dimensional multi-bay panels: for simply supported edges, ignore rows marked by+;

for clamped edges, ignore rows marked by * (yo ¼ 101; optimum periodic angle corresponding to lowest flutter dynamic

pressure)

Number of spans Critical pressure parameter (Lcrit) Critical phase constant ðmxÞcrit

1 * 23669 0

+ 60248 p
2 * 23669 0

43461 p=2
+ 60248 p

3 * 23669 0

36923 p=3
50050 2p=3

+ 60248 p
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4. Conclusion

In this work it is shown that the Floquet’s principle which had been so extensively used for free
vibration analysis of periodic structures [18,25] and flutter of one-dimensional multi-bay periodic
flat panels under supersonic flow [12,13], is also applicable to the analysis of wave propagation
and flutter of multi-bay periodic curved panels under supersonic flow. The triangular FEM [16]
with Floquet’s principle for non-attenuating waves in periodic structure has been proposed for the
supersonic flutter analysis of infinite periodic curved panels. The 3-D plot related to O2mx2L is
found corresponding to the optimum subtended angle where pressure parameter is lowest.
Finally, the ‘‘flutter line’’ (the point where @mx=@O ¼ 0) is observed in the O2mx2L plot. The
lower limiting points of ‘‘flutter line’’ have been identified to the critical flutter condition of single
curved panel of finite length with four edges simply supported. The upper limit corresponds to the
critical flutter condition of single curved panel with straight edges simply supported and curved
edges clamped. This is verified by computing the critical flutter condition of single curved panel
with these end boundary conditions in a finite element. These bounding flutter results are similar
to the critical flutter condition of the flat panel case [12,13]. Finally, the critical flutter parameters
of multi-supported curved panels (1-span, 2-span and 3-span) of finite length are presented. These
results can be read off from the ‘‘flutter line’’ (Fig. 5). This is perhaps the first application of wave
propagation method to flutter analysis of periodically supported curved panels.
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